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Transport properties of highly conductive n-type Al-rich Al ,Ga;_,N (x=0.7)

M. L. Nakarmi, K. H. Kim, K. Zhu, J. Y. Lin, and H. X. Jianga)
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601

(Received 5 February 2004; accepted 2 September)2004

We report here the growth and transport studies of conduntiype Al,Ga, ,N alloys with high Al
contents (x=0.7). Si-doped AlGa_N alloys were grown by metalorganic chemical vapor
deposition on AIN-epilayer/sapphire substrates with very smooth surface ntigpe resistivities

have been obtained for Al-rich &ba,_,N alloys. The resistivity was observed to increase rapidly
with increasingx due to the deepening of the Si donor energy level. Transport measurements have
indicated that we have achieveetype conduction in pure AIN. From the temperature dependence
of the resistivity, the donor activation energy was estimated to vary from 23 to 180 meWas
increased from 0.7 to 1.0. @004 American Institute of Physics
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Al-rich  AlGaN alloys, covering wavelengths from and trimethylaluminum(TMAI) for Al, respectively. Blue
300 to 200 nm, are ideal materials for the development oAmmonia and silan€SiH,) were used as nitrogen and silicon
chip-scale UV light sources/sensors, because AlGaN is thsources, respectively. Variable temperature Hall-effgtan-
ultrawide band-gap semiconductor system in which the bandard Van der Paupymeasurement was employed to measure
gap can be easily engineered through the use of alloying anhe electron concentration, mobility and resistivity. X-ray
heterostructure design. Efficient solid-state UV light sourcesdiffraction and photoluminescence were used to determine
sensors are crucial in many fields of research and develophe Al content and the crystalline quality of AlGaN epilayers.
ment. For instance, protein fluorescence is generally excitedtomic force microscop€AFM) was used to study the sur-
by UV light; monitoring changes of intrinsic fluorescence in face morphology; no crack was found for all samples studied
a protein can provide important information on its structuralin this work.
changes. Thus, the availability of chip-scale UV light Achieving highly conductive AlGa,_,N alloys with high
sources is expected to open up new opportunities for medicall contents is known to be very challenging due to several
research and health care. Solid-state UV light sources alsgell-known mechanisms(i) an increase in the ionization
have applications in water purification, equipment/personneénergy of the dopants with increasing Al contérand (ii)
decontamination, and white light generatfoRecently, sev- the formation energy of Al vacandy/, ) decreases with in-
eral groups have successfully demonstrated the operation efeasing Al content and becomes very low with a triple nega-
deep UV emitters based on AlGaN alloy. However, tively charged state in A|N\/il—)_13—15 It is known that oxy-
achieving highly conductiver-type andp-type ALGa,_.N  gen impurity incorporation as well as the presence of
alloys with high Al contents(x>0.6) is essential for the gjsjocations can enhance the formation of cation vacancies
realization of high performance practical devices. during the nitride crystal growth to form energetically stable

We have previously reported the results fetype con- v, or V,—0y complexes>™’ We thus believe that high
ductive ALGa,_,N alloys forx up to 0.7; a resistivity value oxygen impurity and dislocation densities translate to a re-
of 0.15Q cm (with a free electron concentration of 2.1 duced conductivity in AlGaN and AIN and that it is neces-
X 108 cm3 and mobility of 20 cm/V s) was achieved for  sary to control the oxygen impurity and dislocation densities
AlgeGay3N.™ Recently, using In-Si co-doping)-type  peforen-type conductivity can be improved in AlGaN with
Alo 6553 39\ has been obtained with an electron concentrahigh Al contents. Figure 1 shows the oxygen and carbon
tion of 2.5x 10" cm™® and mobility of 22 cri/V's, corre-  impurity profiles as measured by SIMS for an AIN epilayer,
sponding to a resistivity of 0.010 cm.” There were also jndicating that the oxygen concentration in our epilayers is
several studies on Si doped AR An electron concentra- quite low (~2x 10 cmd). This is one of the keys for
tion of 9.5x 10'° cm® in Si doped AIN was obtained; how- achieving highly conductive Al-rich AlGaN alloys. Further-
ever, no resistivity value was report_é‘ﬂ. _ more, the use of high quality AIN-epilayer/sapphire as a tem-

In this letter, we report on the epitaxial growth and trans-p 46 for the subsequent growth of Si-doped layers is also
port studies of Si-doped-type Al-rich Al,Ga N epilayers  gqsential for attaining highly conductive Al-rich epilayers.
(x=0.7) with low resistivities. Al-rich AlGaN epilayers o penefits of inserting AIN epitaxial layer as a template for
(x=0.7) were grown on sapphire substrates by MOCVD gjs|ocation density reduction have been demonstrated in sev-
with a thickness of about &m. A 0.5 um AIN epilayer was  grg) previous experiment&?®
first deposited o0rf0001) sapphire substrate with a low tem- Figure 2 presents the room temperature Hall measure-
perature buffer, followed by the growth of Si-doped ment results oh-Al,Ga,_N (x=0.7), showing the Al con-
AlLGa N epilayer. Thge ta_rgfeted Si-dopant_concentrationgn (x) dependent resistivitya), electron concentratiotb),
(Ns) was around & 10" cm® in all samples. The metalor- 04 glectron mobility(c), respectively. Figure 2 shows that
ganic sources used were trimethylgalliuMGa) for Ga  \ye have achieved low room temperaturéype resistivities
for Al-rich AlGaN alloys. For instant, a low resistivity of
¥Electronic mail: jiang@phys.ksu.edu 0.0075Q cm (with an electron concentration of 3.3
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FIG. 1. Oxygen and carbon impurity profiles in an AIN epilayer, as probed 10° +——1T"—"T"—"T"—"T"—"T"—1"—1—
by SIMS (performed by Charles Evans & Associpte 0 100 200 300 400 500 600 700 800
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X 10* cm™2 and mobility of 25 crd/V s) has been obtained fe 3 o _ . devend o s
for Aly,Gay,N. The measured resistivity increases with the’ - 3 “omparison of temperature-dependent resistivity results for
. n-Al,Ga N of differentx (x=0.7).
Al content(x) very rapidly and the dependence can be de-
scribed by the following empirical equation:

p=po[1+Cexp- EJ/kT)], (2)

whereC is a fitting constant anlis the Boltzmann constant.
The inset of Fig. 4 illustrates an example of this fitting pro-

from which one can deduce that the resistivity of C€SS for Abs/Ga N, where a value of 41 meV fdE, was
n-Al,Ga_,N (x>0.7) increases by about one order of mag- obtained for this sample. The Al content dependendg,aé
nitude when Al contentx) is increased by about 8%. This depicted in Fig. 4, which clearly shows th} increases

rapid increase in resistivity is predominantly due to the in_lingarly with an increase Of the A.I content. This deepening Qf
crease in donor ionization energy with E, is due to the fact that with an increase of the Al content in
The temperature-dependent resistivity results forAIQaN aIon_s, ban_d gap and electron effective mass Increase,
n-AlGa_N (x=0.7) in the temperature range from while the dielectric constant and band gap renormalization
70 t?) 65_6 K are s.hown in Fig. 3. Strong temperature depenf-e‘creCt decrease. An efstimated.vall_Je of about 180 meEjor
dence is observed, especially for samples with high Al con." PUr® AIN was obtained, which is Iar%er than the value of
This discrepancy

. . 1
tent (x>0.8). The Al content dependence of the donor acti-abOUt 85 meV ohbte;medhby TﬁmyaGUal. L .
vation energyg, can be estimated by fitting the temperature—m.ay be_ due_to the fact that the donor activation ehergy varnes
0~e . ; with Si doping level due to the band gap renormalization

dependent resistivity data with the following thermal

activation behavior: effect.

p(AlLGa «N) = p(AIN) X 107 (107008 (1)
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FIG. 2. Room temperature Hall measurement results1-éf,Ga N (x FIG. 4. Si donor activation energy as a function of the Al contengsti-
=0.7). (a), (b), and(c) The Al content(x) dependent resistivity, electron mated from the temperature-dependent resistivity results. The inset shows
concentration, and electron mobility, respectively; lines are guides for thehe Arrehenius plot of the resistivity af-Aly,/Ga N and an activation

eye. energy of 41 meV was obtained.
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